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Abstract—Cloud storage as one of the most important services of cloud computing significantly facilitates cloud users to outsource their data
to the cloud for storage and share them with authorized users. In cloud storage, secure deduplication has been widely investigated as it can
eliminate the redundancy over the encrypted data to reduce storage space and communication overhead. Regarding the security and privacy,
many existing secure deduplication schemes generally focus on achieving the following properties: data confidentiality, tag consistency,
access control and resistance to brute-force attacks. However, as far as we know, none of them can achieve these four requirements at the
same time. To overcome this shortcoming, in this paper, we propose an efficient secure deduplication scheme that supports user-defined
access control. Specifically, by allowing only the cloud service provider to authorize data access on behalf of data owners, our scheme can
maximally eliminate duplicates without violating the security and privacy of cloud users. Detailed security analysis shows that our authorized
secure deduplication scheme achieves data confidentiality and tag consistency while resisting brute-force attacks. Furthermore, extensive
simulations demonstrate that our scheme outperforms the existing competing schemes, in terms of computational, communication and
storage overheads as well as the effectiveness of deduplication.

Index Terms—Secure deduplication, access control, authorized deduplication system, tag consistency, brute-force attacks.
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1 INTRODUCTION

W ITH the great benefits of cloud computing, an increasing
amount of data have been outsourced by data owners to the

cloud and shared with authorized users. For example, the Cisco global
cloud index shows that the data stored in cloud will nearly reach
1.3 zettabytes by 2021 [1]. As a result, the management of the
ever-increasing data becomes a critical challenge for cloud storage
services. In fact, the study shows that about 75% of digital data are
identical [2], and redundancy in backup and archival storage system is
significantly more than 90% [3]. In this situation, data deduplication
technique [4] has been widely developed in cloud storage because it
can significantly reduce storage costs by storing only a single copy of
redundant data. Indeed, data deduplication can reduce storage costs
by more than 50% in standard file systems and by more than 90%
for backup applications, and these savings are transformed into huge
financial savings to cloud service providers and users [5].

However, considering security and privacy concerns of outsourced
data, users are likely to encrypt data with their keys before out-
sourcing. As a result, data deduplication would be impeded as an
identical data will be encrypted into different ciphertexts. To make
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data deduplication feasible on encrypted data, convergent encryption
and its implementations or variants have been developed in [6]–[8].
However, convergent encryption suffers from brute-force attacks for
predictable messages. To overcome this issue, some server-aided en-
cryption schemes [9]–[11] have been presented. Unfortunately, they
suffer from the duplicate faking attack [12] that prevents legitimate
users from obtaining correct data. In more details, the adversary
generates the ciphertext and the corresponding tag from different data
m∗ and m, respectively. Once the cloud service provider stores the
inconsistent ciphertext and tag, subsequent users who upload the tag
corresponding to m can only obtain the incorrect data m∗. Although
some schemes [13]–[15] try to resist this attack, the tag consistency
is verified after downloading the ciphertext by users, which cannot
exactly conclude whether the incorrect data is caused by duplicate
faking attacks in data upload or is corrupted during data storage. The
main reason for this attack is that the ciphertext and the corresponding
tag are generated independently, which makes it impossible for the
cloud service provider to check the tag consistency. Thus, a solution
that computes the tag directly by hashing the ciphertext is presented
[12], which obviously supports the tag consistency check by com-
paring the hash of ciphertext to the received tag. Based on this idea,
tag consistency and message authentication have been considered in
[16], where the cloud service provider checks tag consistency and
users conduct the message authentication after data download.

As one of the essential components of cloud computing, access
control has been widely used in practical cloud products. Thus, it
is an inevitable trend to develop authorized secure deduplication.
However, as far as we know, only a few schemes [17]–[19] deal
with authorized secure deduplication by introducing an additional
authorized server or the hybrid cloud architecture, but they suffer
from either duplicate faking attacks or brute-force attacks. As far as
we know, none of existing schemes can achieve data confidentiality,
tag consistency, access control and resistance to brute-force attacks
at the same time. To overcome this challenge, in this paper, we
design an efficient secure cross-user deduplication scheme with user-
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defined access control, which mainly includes the following four
contributions:

• Considering that many access settings over the cloud are
based on user identity, we set user identity as an example
attribute rather than complexity attributes. In order to resist
the brute-force attack, our scheme allows users to randomly
select the symmetric key instead of directly hashing the data
itself. Meanwhile, the tag consistency check can be supported
by directly generating the tag from hashing the symmetric
ciphertext.

• In order to support access control, our scheme skillfully
combines the Composite-order Bilinear Pairing technique
[20] and Boneh-Goh-Nissim cryptosystem [21] to design an
efficient proxy re-encryption algorithm, which achieves that
only the cloud service provider can authorize data access on
behalf of the data owner without the privacy breach. Mean-
while, our design can supervise the CSP’s behavior since only
the CSP owns a private key to complete the re-encryption
operation. That is, even if the CSP is not completely trusted,
the CSP has to follow each user’s authorization set to perform
re-encryption operations to maintain good reputation.

• Detailed security analyses demonstrate that our scheme is the
first to achieve data confidentiality, resistance to brute-force
attacks, tag consistency and access control at the same time.
Compared to existing competing schemes, our scheme neither
needs to introduce an extra server nor requires users to be
constantly online during data upload phase.

• In order to reduce the time complexity of the duplicate search,
we introduce the Bloom filter [22] to efficiently check the
duplication. Extensive experiments demonstrate the efficiency
of our scheme in terms of deduplication effectiveness, com-
putational cost, communication overhead and storage cost.

Note that similar to [19], we set the granularity of access right
to user-level in this paper. That is the data owner sets the specific
access policy and sends it to the cloud service provider for checking
the attributes of other users. If they satisfy with the policy defined by
this data owner, the cloud service provider can help them to obtain
the secret key of this data owner. For simplifying our presentation,
we set user identity as an example attribute, e.g., the data owner U1

allows other users with ID = {U2, U3, U4} to share its data storage.
In fact, our scheme can be easily extended to support more fine-
grained access right, e.g., file-level. More precisely, the cloud service
provider can performs data deduplication only if the attributes of the
file F satisfies the policy of the file F ∗.

Next, we will introduce the models and design goals in Section
2, before recalling some necessary preliminaries in Section 3. Then,
we present our scheme in Section 4, followed by its security analysis
and performance evaluation in Sections 5 and 6, respectively. Related
work is discussed in Section 7. We conclude this paper in Section 8.

2 MODELS AND DESIGN GOALS

In this section, we describe an authorized deduplication model and
the corresponding threat model used in this paper and identify our
design goals.

2.1 System Model
Similar to many cloud (cloud computing)-related researches [19],
[23], our authorized deduplication system comprises three types of
entities: a key generation center, a cloud service provider and a
number of users U = {U1, U2, . . . , Uw}. Figure 1 illustrates the

system architecture, and the details of each entity are described as
follows.

• Key generation center (KGC): The KGC is responsible for
setting up the whole system at the beginning. Specifically,
the KGC generates system parameters, the secret key of the
cloud service provider, and public/private key pair of every
user. After that, the KGC can keep offline unless a new user
joins the system. Note that the KGC only needs to generate
the public/private key pair for the newcomer.

• Cloud service provider (CSP): The CSP provides storage
services for users. In the authorized deduplication system,
without violating access control, the CSP would like to
eliminate the redundant data and keep only one copy to reduce
the overhead associated with data storage.

• Users: In our authorized deduplication system, users can
be either data owners or authorized users. The data owner
typically refers to the user who outsources encrypted data
to the CSP and shares these outsourced data with authorized
users. The authorized user generally refers to the user who is
authorized by data owners to access their outsourced data.
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Fig. 1: System model under consideration.

2.2 Threat Model
Similar to most secure deduplication schemes [19], [24], [25], the
KGC is assumed to be completely trusted and would not be com-
promised by any adversary. The CSP is assumed to be honest-but-
curious, which means that it honestly follows the underlying scheme,
but it may attempt to obtain as much secret information as possible
based on its possessions. Users (corrupted by the adversary) are
assumed to be malicious that they would try to access unauthorized
data.

Similar to [15], [16], two kinds of adversaries are considered in
our system: external adversary and internal adversary.

• External adversary: An external adversary is interested in the
content of the data outsourced to the CSP, while it hasn’t
received any secrets from the KGC.

• Internal adversary: An internal adversary can be anyone who
received a secret from the KGC and is interested in obtaining
the content of unowned or unauthorized data. Specifically,
based on some background knowledge of the message space,
the CSP could launch offline brute-force attacks to determine
which message corresponds to the specific encrypted data,
while unauthorized users could launch online brute-force
attacks to know whether a user of interest owns certain mes-
sages in the message space. Furthermore, any user (corrupted
by the adversary) would launch the duplicate faking attack to
prevent legitimate authorized users from obtaining the correct
data.

In particular, as claimed in [19], [26], [27], we also hold the same
assumption that the CSP would not collude with any user due to the

Authorized licensed use limited to: University of New Brunswick. Downloaded on May 21,2021 at 18:00:57 UTC from IEEE Xplore.  Restrictions apply. 



1545-5971 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2020.2987793, IEEE
Transactions on Dependable and Secure Computing

3

reputation of the CSP and the privacy concerns of users themselves.
Obviously, any collusion would worse the reputation of the CSP,
which lead to final loss of their business.

2.3 Design Goals

Based on the above threat model, we aim to achieve the following
security goals in the proposed scheme.

• Data confidentiality: Any adversary including the CSP or
unauthorized users cannot feasibly extract any useful infor-
mation (i.e., data content) from the outsourced data.

• Resistance to brute-force attacks: Even though brute-force
attacks can be launched with the background knowledge of
message space, any adversary even corrupting the CSP or
unauthorized users cannot obtain which content corresponds
to the specific encrypted data or whether a user of interest
owns some data.

• Access control: In our authorized deduplication system, the
proposed scheme should ensure that outsourced encrypted
data can be available not only to the data owner but also to all
authorized users selected by this data owner. On the contrary,
unauthorized users cannot access the content of encrypted
data outsourced by users of interest.

• Tag consistency: After data deduplication, only one copy is
stored in the CSP, and if this copy is inconsistent with the
related tag, i.e., a malicious user (corrupted by an adversary)
launches duplicate faking attacks during data upload, then the
subsequent data owner together with authorized users cannot
obtain the original data. Thus, the proposed scheme should
provide the tag consistency check to ensure the uploaded
ciphertext is consistent with the corresponding tag.

• Efficiency: In addition to security requirements, efficiency
is also an indispensable metric of data deduplication, espe-
cially for practical applications [15], [28]. More specifically,
under satisfying access rights, improving the effectiveness
of deduplication is our design goal. Besides, achieving the
efficiency of computation, communication, and storage is also
our design goal.

3 PRELIMINARIES

In this section, we outline the bilinear groups of composite order [20],
Boneh-Goh-Nissim cryptosystem [21] and Bloom filter [22], which
will serve as the basis of our scheme.

3.1 Bilinear Groups of Composite Order

Given a security parameter κ, a composite bilinear parameter gener-
ator Gen(κ) outputs a tuple (N,G,GT , e), where N = pq, p and q
are two κ-bit primes, G and GT are two cyclic multiplicative groups
of composite order N , and e : G × G → GT is a bilinear map with
the following properties:

• Bilinear: e(xa, yb) = e(x, y)ab for all x, y ∈ G, and a, b ∈
ZN .

• Non-degeneracy: If g is a generator of G, then e(g, g) is a
generator of GT with the order N .

• Computability: For all x, y ∈ G, there exists an efficient
algorithm to compute e(x, y) ∈ GT .

Some related complexity assumptions are given below. For more
comprehensive descriptions, refer to [29], [30].

Definition 1 (Discrete Logarithm (DL) Problem). The DL problem
in G is stated as follows: given x ∈ G, compute a ∈ ZN such that
ga = x.

Definition 2 (Divisible Decision Bilinear Diffie-Hellman (DDBDH)
Assumption). The DDBDH assumption is that: given (g, ga, gb,W ),
for g ∈ G, unknown a, b ∈ Z2

N and W ∈ GT , no probabilis-
tic, polynomial-time algorithm B can determine whether W =
e(g, g)a/b or a random element from GT with more than a negligible
function negl(κ), i.e.,

DDBDH−AdvB =|Pr[B(g, ga, gb,W ) = 1]−
Pr[B(g, ga, gb, e(g, g)a/b) = 1]|
≤ negl(κ).

Definition 3 (Subgroup Decision (SD) Assumption). Let (N =
pq,G,GT , e) be a tuple produced by Gen(κ), where p and q are
primes. Let g be a generator of G, then g1 = gq ∈ G can generate
the subgroup Gp = {g01 , g11 , . . . , g

p−1
1 } of order p in G. The SD

assumption is that: given the parameters (N,G,GT , e, y), where the
element y is randomly drawn from either G or the subgroup Gp, no
probabilistic, polynomial-time algorithm B can decide whether an
element y is in the subgroup Gp with more than a negligible function
negl(κ), i.e.,

SD−AdvB =|Pr[B(N,G,GT , e, y) = 1 : y ∈ G]−
Pr[B(N,G,GT , e, y) = 1 : y ∈ Gp]|
≤negl(κ).

3.2 Boneh-Goh-Nissim Cryptosystem

Boneh-Goh-Nissim (BGN) cryptosystem mainly contains three algo-
rithms: key generation, encryption, and decryption.

• Key generation: Given a security parameter κ, run Gen(κ)
to get a tuple (N = pq,G,GT , e). Randomly choose two
generators g, x ∈ G and set y = xq . The public key is
pk = (N,G,GT , e, g, y) and the corresponding private key
is sk = p.

• Encryption: Given a message m ∈ {0, 1, . . . ,W}, where
W � q, choose a random number r ∈ ZN , and compute the
ciphertext as C = gmyr ∈ G.

• Decryption: Given the ciphertext C and private key p, com-
pute Cp = (gmyr)p = (gp)m. Let g′ = gp, then Cp = g′

m.
To obtain m, it suffices to compute the discrete logarithm of
g′
m. Actually, since the message space is very small, say

W � q, it is possible to compute the discrete logarithm
by utilizing Pollard’s lambda method with the expected time
O(
√
W ) [31].

Based on the above descriptions, the BGN decryption contains
two steps: 1) eliminate the random number with the private key p, and
2) compute the discrete logarithm. However, when the message space
is large, computing the discrete logarithm becomes a hard problem
(see Definition 1), which means that the entity owning the private
key can performs the first step to remove the effects of the random
number, but cannot complete the second step to obtain the plaintext.
This property exactly meets the requirements of our scheme that only
the CSP with the private key can authorize data access on behalf of the
data owner without threatening the privacy of users. Thus, we adopt
the BGN cryptosystem in this paper, where the detailed introduction
and analysis will be shown in Sections 4.2.3 and 5.1, respectively.
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3.3 Bloom Filter

The Bloom filter (BF) is a space-efficient data structure for represent-
ing a set and testing whether an element is definitely not or possibly in
this set. Specifically, a BF is initialized by InitBF (δ) to generate an
array of δ bits, where all bits are set to 0 (see Fig. 2). The BF mainly
contains two operations: element addition and membership query. In
order to add an element or query whether an element is in the set, the
BF chooses f independent hash functions {h1, h2, . . . , hf}, each of
which uniformly maps the element to one of δ array positions, i.e.,
hi : {0, 1}∗ → {1, 2, . . . , δ} for i = 1, 2, . . . , f .

• Element addition AddBF (x): To add an element x in
a set, f array positions in bit array are computed as
{h1(x), . . . , hf (x)}. Then, set the hi(x)-th bit in the array
to 1. Note that a bit location can be set to 1 multiple times,
but only the first change has an effect.

• Membership query QueryBF (y): To query whether an
element y is included in the set, check the value of the
hi(y)-th bit in the array for i = 1, 2, . . . , f . The result
of QueryBF (y) is either 1 or 0. If any of the bits at f
positions is 0, then return 0, which means that the element y
is definitely not in the set. If all are 1, then return 1, which
means that either the element y is in the set, or the bits have
by chance been set to 1 during the addition of other elements,
resulting in a false positive [32].

Particularly, if n elements have been added into the BF, and each
element is mapped to the f positions with equal probability, the false
positive probability can be calculated by

P =
(
1− (1− 1/δ)

fn
)f
≈
(
1− e−fn/δ

)f
, (1)

which can be minimized when f = δ
n ln 2. Figure 2 provides an

example of BF.
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Fig. 2: An example of a BF initialized by InitBF (10) and using 3
hash functions {h1, h2, h3}.

4 PROPOSED SCHEME

In this section, we present our scheme, which mainly includes three
phases: system initialization, data upload and data download. Before
that, we would like to give the description of notations used in the
proposed scheme in Table 1.

TABLE 1: Notations used in the proposed scheme

Notation Description
{U1, . . . , Uw} w users in the system
(N,G,GT , e) parameters of the composite bilinear pairing
(mpk,msk) master public and private keys
(pki, ski) the public and private key pair of the user Ui
H1, H2 two cryptographic hash functions
δ the size of the Bloom filter
{h1, . . . , hf} f hash functions in the Bloom filter
BFi the BF used to represent the dataset of Ui
InitBFi(δ) the initialization operation for BFi
AddBFi(·) the element addition operation in BFi
QueryBFi(·) the element query operation in BFi
ai ∈ GT the secret value selected by Ui randomly
Cai the ciphertext of secret ai generated by Ui
Cjai the re-encrypted ciphertext for Uj based on Cai
SEbi (·) symmetric encryption algorithm with a key bi
Cim the ciphertext of the data m generated by Ui
T im the tag for checking the duplicate of the data m
τ im the token of the ciphertext Cim
linkim the logical link to the data m outsourced by Ui
Oi ⊆ U the authorization set defined by Ui
Ii ⊆ U the access set authorized to Ui
µi ∈ {0, 1} upload decision for duplicate lookup in Ui’s dataset
µ ∈ {0, 1} the final decision on whether to upload data

4.1 System Initialization

In our scheme, the system initialization mainly includes three parts:
(1) KGC selects system parameters and generates private keys for
users and the CSP; (2) each user sets his or her own authorization
set and encrypts the selected symmetric key; (3) CSP initializes the
Bloom filter and determines the access set of each user.

(1) KGC generates system parameters and the public and private
key pair for each user as follows.

• Take a security parameter κ0 as input, and output the tuple
(N = pq,G,GT , e) by running the composite bilinear-
parameter generation algorithm Gen(κ0).

• Randomly choose two generators g, x ∈ G and a number
α ∈ ZN , compute g1 = gα ∈ G. In addition, let z =
e(g, g)p and y = xq . The master public and private keys are
mpk = (g1, z, y) and msk = α, respectively.

• For each user Ui ∈ U , generate the corresponding public and
private key pair as (pki, ski) = (gdiα

−1

, di), where di ∈
ZN is a random number.

• Choose two cryptographic hash functions: H1 : GT →
{0, 1}κ1 and H2 : {0, 1}∗ → {0, 1}κ1 , where κ1 is the
bit length of the symmetric key.

Finally, the KGC keeps the master private key α se-
cret, and sends di and p to Ui and the CSP by secure
channels, respectively. The KGC publishes system parameters
(N,G,GT , e, g1, z, y,H1, H2, pk1, pk2, · · · , pkw).

Note that, as mentioned in Section 2.2, we assume that the KGC
is completely trusted and would not be compromised by any attacker,
so the security of our scheme can be guaranteed. Actually, we can
enhance our scheme to improve reliability against the compromise of
the KGC. Simply, our approach is to extend the system initialization
so that a number of KGCs cooperate in generating the private keys.
Specifically, we can achieve this goal by exploiting (t, n)-threshold
secret sharing techniques, like Shamir (t, n)-threshold technique
[33]. Based on the security of the (t, n)-threshold secret sharing
technique, it is assured the security of our scheme unless at least
t KGCs are compromised. Due to page limitations, we do not give
the details here, but will discuss them in future work.

(2) Each user Ui ∈ U initializes the parameters as folllows.
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Fig. 3: Format of the outsourced data stored on the CSP.

• Define an authorization set Oi ⊆ U that all users in Oi can
access the data uploaded by Ui. Naturally, Ui always has
access to his or her own dataset, so Ui ∈ Oi.

• Randomly choose an element ai ∈ GT as a secret, and
compute its ciphertext Cai as

Cai = (gβi

1 y
ri , aiz

βi) = (gαβiyri , aiz
βi), (2)

where βi, ri ∈ ZN are two random numbers, g1 = gα, and
gαβiyri ∈ G is generated by the BGN encryption.

Ui stores bi = H1(ai) and sends (Ui, Oi, Cai) to the CSP.
(3) After receiving (Ui, Oi, Cai) from each user Ui, the CSP

completes the following initialization operations.

• For each user Ui ∈ U , initialize an empty access set Ii and
check whether Ui ∈ Oj for j = 1, 2, . . . , w, and i 6= j. If
Ui ∈ Oj , then add Uj to the set Ii, i.e.,

Ii =
{
Uj |Ui ∈ Oj , for j = 1, 2, . . . , w, and i 6= j

}
.

That is, Ui has access to all users in the access set Ii.
• Set an appropriate value for δ and choose f independent hash

functions {h1, . . . , hf}, where hl : {0, 1}∗ → {1, 2, . . . , δ}
for l = 1, . . . , f . For each user Ui, initialize the correspond-
ing filter BFi by executing InitBFi(δ).

Finally, the CSP publishes f hash functions {h1, . . . , hf}, and
stores all tuples (Ui, Oi, Ii, Cai , BFi), for i = 1, 2, . . . , w, as
shown in Fig. 3.

In our scheme, the user revocation is equal to the change of
the authorized set. Specifically, if the authorized set is changed, for
example, Ui is deleted from the authorized set Oj , i.e., Ui 6∈ Oj ,
then this user losses the access to subsequent data uploaded by Uj .
The simple method to achieve this goal is that after the change of
the authorized set, in addition to informing the CSP about the new
authorized set O∗j = Oj\Ui, the data owner Uj also needs to re-
select the private key to encrypt the subsequent uploaded data. Based
on the design of our scheme, the CSP would not help Ui to generate
the re-encrypted ciphertext (see Eq. (4)), and thus Ui cannot obtain
the re-selected key, which means that Ui can no longer decrypt the
subsequent ciphertexts uploaded by Uj .

4.2 Data Upload
In this section, we present the details about our authorized dedupli-
cation scheme. Before that, we introduce the overall protocol of the
authorized deduplication in Section 4.2.1.

4.2.1 Authorized deduplication protocol
In our authorized deduplication protocol, the deduplication mainly
includes two parts: intra-deduplication and inter-deduplication.

Based on Algorithm 1, when each user Ui wants to upload the
data m, the CSP firstly conducts the intra-deduplication in Ui’s

dataset (see lines 1-3). If any duplicate exists, the final decision µ
is set to 0, which means that the data m does not need to be uploaded
and the protocol can be terminated. Otherwise, the CSP further
eliminates the redundancy by performing the inter-deduplication (see
lines 5-24). Particularly, if Ui is not authorized by Uj , the CSP
cannot eliminate the duplicate even if m is already stored in cloud.
Therefore, the CSP only needs to check whether the duplicate exists
in datasets that Ui can access (see line 5).

Algorithm 1 Authorized deduplication protocol
When Ui wants to upload the data, CSP performs the following steps
to check the duplicate:

1: Check whether the duplicate exists in Ui’s dataset.
2: if the duplicate exists then
3: return the final decision value µ = 0.
4: else
5: for each user Uj ∈ Ii do
6: Check the relationship between Oi and Oj .
7: if Oi ⊆ Oj or Oj ⊂ Oi then
8: Check whether the duplicate exists in Uj’s dataset.
9: if the duplicate exists then

10: if Oi ⊆ Oj then
11: Set µj = 0.
12: end if
13: if Oj ⊂ Oi then
14: Set µj = 1 and delete the corresponding duplicate

in Uj’s dataset.
15: end if
16: else
17: Set µj = 1.
18: end if
19: else
20: Set µj = 1.
21: end if
22: end for
23: Compute the final decision value µ =

∧
Uj∈Ii µj .

24: return µ.
25: end if

During the inter-deduplication, due to access control, the CSP
determines whether it is necessary to check the duplicate in Uj’s
dataset according to the inclusion relationship of two authorization
sets Oi and Oj (see line 6). Specifically, if Oi and Oj satisfy the
inclusion relationship, i.e., Oi ⊆ Oj or Oj ⊂ Oi, the CSP checks
the duplicate in Uj’s dataset (see lines 7-18). Further, if the duplicate
exists, the CSP eliminates the duplicate between Ui and Uj’s datasets.
Meanwhile, to ensure access control for all users belonging to the set
Oi ∪ Oj , the CSP stores the unique copy in the dataset of the user
whose authorization set is the superset.

• If Oi ⊆ Oj , then the unique copy needs to be stored in Uj’s
dataset. Thus, set µj = 0 (see lines 10-12).

• If Oj ⊂ Oi, then the unique copy needs to be stored in Ui’s
dataset. Thus, set µj = 1. Besides, the CSP deletes the found
duplicate in Uj’s dataset for eliminating the redundancy (see
lines 13-15).

However, if Oi * Oj and Oj * Oi, then the CSP cannot perform
data deduplication. In general, we can find at least two users Uk ∈ Oi
and Ul ∈ Oj such that Uk /∈ Oj and Ul /∈ Oi, i.e., Uk cannot access
Uj’s dataset, and Ul cannot access Ui’ dataset. Suppose the encrypted
data of m is already stored in Uj’s dataset, i.e., Cjm, if Ui does not
upload the encrypted data of m after the deduplication, Ui can access
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Cjm but Uk cannot, which violates access control. In this case, the
CSP does not check the duplication in Uj’ dataset and directly sets
µj = 1 (see lines 19-20).

After checking the duplicate in the datasets belonging to all users
in Ii, the CSP obains the final decision µ on whether Ui needs to
upload the encrypted data (see lines 23-24). More precisely, for all
users in Ii, the encrypted data needs to be uploaded only when µ = 1,
i.e., µj = 1 for each user Uj ∈ Ii.

4.2.2 Intra-deduplication
When Ui wants to upload m, Ui generates a tag T im and sends it to
the CSP to perform the intra-deduplication as follows.

Step 1: Ui generates T im. Ui first encrypts the data m, and then
generates T im with the computed ciphertext as follows.

• Based on the symmetric key bi = H1(ai) (see Section 4.1),
compute the ciphertext as

Cim = SEbi(m), (3)

where SEbi(·) represents the symmetric encryption algorithm
with the symmetric key bi, e.g., AES.

• With f hash functions {h1, h2, . . . , hf}, compute

T im =
(
h1
(
Cim
)
, h2
(
Cim
)
, . . . , hf

(
Cim
))
.

• Send the tag T im to the CSP for intra-deduplication.

Step 2: CSP performs intra-deduplication. The CSP determines
whether a duplicate exists by executing QueryBFi

(
T im
)
.

• If QueryBFi
(
T im
)
→ 1, it means the duplicate exists. Thus,

the CSP directly sets µ = 0 and returns it to Ui.
• If QueryBFi

(
T im
)
→ 0, the CSP sets linkim = ∅, and

conducts the following inter-deduplication.

4.2.3 Inter-deduplication
The CSP conducts the inter-deduplication to further check the dupli-
cate in datasets uploaded by other users but accessible to Ui. More
precisely, for each user Uj ∈ Ii, the CSP determines whether it
is necessary to check the duplicate in Uj’s dataset by checking the
inclusion relationship between Oj and Oi.

Step 1: CSP checks Oj and Oi’s inclusion relationship.

• If Oi ⊆ Oj or Oj ⊂ Oi, the CSP re-encrypts Uj’s key
encapsulated ciphertext Caj = (g

βj

1 yrj , ajz
βj ) with the

secret parameter p and Ui’s public key pki = gdiα
−1

:

e
(
(g
βj

1 yrj )p, pki
)
= e(g, g)diβjp = zdiβj , (4)

where g1 = gα and z = e(g, g)p. The re-encrypted cipher-
text for Ui is Ciaj = (zdiβj , ajz

βj ). Then, the CSP returns
Ciaj to the user Ui.

• Otherwise, the CSP directly sets µj = 1. In this case, the
next steps 2 and 3 will be skipped.

Step 2: Ui generates the tag T jm. IfUi receivesCiaj ,Ui generates
the tag used for checking the duplicate in Uj’s dataset.

• Based on Ciaj = (zdiβj , ajz
βj ), Ui recovers the secret aj

selected by Uj with the private key ski = di as

aj = aj · zβj
/(
zdiβj

)d−1
i , (5)

and computes the symmetric key bj = H1(aj).
• With the symmetric key bj , Ui encrypts the data m as

Cjm = SEbj (m), and then computes the tag T jm =(
h1(C

j
m), h2(C

j
m), . . . , hf (C

j
m)
)
.

• Then, Ui stores bj locally, and sends T jm to the CSP.

Step 3: CSP checks the duplicate. Once the tag T jm is received,
the CSP checks whether the duplicate exists in Uj’s dataset by
executing QueryBFj

(
T jm
)
.

• If QueryBFj
(
T jm
)
→ 0, then the duplicate does not exist

in Uj’s dataset. Thus, the CSP sets µj = 1.
• If QueryBFj

(
T jm
)
→ 1, then the duplicate exists in Uj’s

dataset. The CSP computes the token τ jm with T jm as

τ jm = H2

(
h1(C

j
m)‖h2(Cjm)‖ · · · ‖hf (Cjm)

)
, (6)

which is used to locate the record of this duplicate. Then, the
CSP finds the same token by comparing τ jm to previously
stored tokens in Uj’s dataset, e.g.,

(
τ jmk

, linkjmk

)
, which

implies mk = m. Based on Step 1, there are two cases to
be discussed.

– When Oi ⊆ Oj , the CSP sets µj = 0 and linkim =
linkim ∪ linkjmk

.
– When Oj ⊂ Oi, the CSP sets µj = 1.

Step 4: CSP returns the final decision. After obtaining the deci-
sion µj ∈ {0, 1} for each Uj ∈ Ii, the CSP computes the final
decision

µ =
∧

Uj∈Ii

µj . (7)

Obviously, the value of µ is either 1 or 0, and µ = 1 only if µj = 1
for all Uj ∈ Ii. Finally, the CSP returns µ to the user Ui. Note that
the CSP also returns linkim when µ = 0.

4.2.4 Data processing
After receiving µ, if µ = 0, Ui does not upload Cim. In this case, the
CSP also does not perform any update operations when the duplicate
is found in intra-deduplication. If the duplicate is found in inter-
deduplication, i.e., µj = 0 for some user Uj ∈ Ii, with the previously
received tag T im =

(
h1(C

i
m), . . . , hf (C

i
m)
)

(see Section 4.2.2), the
CSP updates the data record of Ui as follows:

• Update the Bloom filter BFi by executing AddBFi
(
T im
)
.

• Compute a token τ im = H2

(
h1(C

i
m)‖ · · · ‖hf (Cim)

)
.

• Store (τ im, link
i
m), where linkim = linkim ∪ linkjmk

(see
Step 3 in Section 4.2.3).

When µ = 1, Ui uploads the ciphertext Cim. In this case, the CSP
checks the tag consistency after receiving Cim.

• With the previously received tag T im, the CSP computes a
token τ im = H2

(
h1(C

i
m)‖ · · · ‖hf (Cim)

)
.

• Based on the received ciphertext Cim, the CSP computes the
corresponding verifiable token as

τverify = H2

(
h1(C

i
m)‖h2(Cim)‖ · · · ‖hf (Cim)

)
.

• The CSP checks whether τ im = τverify holds. If it holds, the
CSP updates the data record of Ui:

– Update the BFi by executing AddBFi
(
T im
)
.

– Store the Cim in Ui’s dataset and use linkim to point
the corresponding logical link.

– Add (τ im, link
i
m) to Ui’s dataset, as shown in Fig. 3,

and then return linkim to Ui.

If τ im 6= τverify , then it implies the ciphertext Cim and
tag T im are inconsistent. Thus, the CSP directly drops the
uploaded data and does not conduct any update operations.
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Additionally, when tag consistency is satisfied, for the case that
QueryBFj

(
T jm
)
→ 1 and µj = 1 (see Step 3 in Section 4.2.3), the

CSP checks whether linkjmk
points to Uj’s dataset.

• If yes, the CSP deletes the corresponding encrypted data Cjmk

and sets linkjmk
= linkim.

• If linkjmk
points to other user’s dataset, e.g., linkjmk

=
linklmk

and j 6= l, then the CSP updates linkjmk
=

linkjmk
∪ linkim, and would not delete any data since the

encrypted data of m is not stored in Uj’s dataset.

Note that regardless of whether the duplicate is found in the
inter-deduplication, the CSP will add (τ im, link

i
m) in Ui’s dataset

and update BFi by calling AddBFi(T im). The effect of this update
operation is when Ui wants to upload the same data m next time, the
CSP can quickly find the duplicate in the intra-deduplication without
requiring further inter-deduplication.

Finally, Ui deletes m and stores (labelm, linkim), where labelm
is the label of m, e.g., the name or feature used to identify m. The
reason for using labelm is to make it easy for users to identify
each data. Besides, Ui also stores the symmetric key bi generated
by himself and bj authorized by each user Uj ∈ Ii. Note that in
the authorized access scenario, the authorized users can certainly
obtain the key of the data owner. That is, in our scheme, regardless of
whether the upload request is sent, the CSP always helps Ui to obtain
all symmetric keys of users in the access set Ii by computing Eqs.
(4) and (5).
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Fig. 4: An example of our authorized deduplication scheme.

4.2.5 An example of data upload
To elaborate on our scheme, we give a simple example of data
upload in Fig. 4. Suppose there are four users {U1, U2, U3, U4}
in the system, and the related authorization set Oi and access set
Ii of each user Ui, i = 1, 2, 3, 4, are shown in Fig. 4(a). Without
loss of generality, we suppose that each user’s dataset is empty at

the beginning, and U1, U2, U3 and U4 try to upload the data m in
turn. Obviously, U1 as an initial uploader can successfully upload the
encrypted data C1

m, as shown in Fig. 4(b).
Then, U2 sends T 2

m to request upload m. The CSP finds the
duplicate does not exist in U2’s dataset during the intra-deduplication
(see Section 4.2.2). In this case, the CSP needs to perform the inter-
deduplication in datasets of U1 and U4 (see Section 4.2.3). Since
O2 ⊂ O1 andO2 ⊂ O4, the CSP checks the duplicate inU1 andU4’s
datasets. Specifically, the CSP generates the re-encrypted ciphertextes
C2
a1 and C2

a4 , and sends them to U2. After that, U2 and the CSP
conduct the Step 2 and Step 3, respectively. Since O2 ⊂ O1 and the
same data has already been stored in U1’s dataset, i.e., C1

m, the CSP
sets µ1 = 0 and link2m = link1m. Although O2 ⊂ O4, there is no
data stored in U4’s dataset, so the CSP directly sets µ4 = 1. Finally,
the CSP computes the final decision µ = µ1 ∧ µ4 = 0 and returns
it to U2. Meanwhile, the CSP updates U2’s data record by executing
AddBF2(T

2
m) and adding (τ2m, link

2
m), as shown in Fig. 4(c). In

this case, U2 does not upload the encrypted data C2
m.

Next, U3 tries to upload m. Similarly, the CSP does not find the
duplicate in U3’s dataset and needs to perform the inter-deduplication
in U4’s dataset. Since there is no duplicate in U4’s dataset, µ4 = 1.
Thus, the final decision is µ = µ4 = 1, which means that U3 needs
to upload C3

m and the CSP updates U3’s dataset after passing tag
consistency verification (see Fig. 4(d)).

After a while, when U4 wants to upload m, the CSP first finds
the duplicate does not exist in U4’s dataset. Then, the CSP performs
the inter-deduplication. Since O4 is the superset of O1, O2 and O3,
the CSP needs to check the duplicate in datasets of U1, U2 and U3.
Particularly, the CSP finds the duplicate in U1’s dataset, and then sets
µ1 = 1 due to O1 ⊂ O4. Similarly, the CSP would set µ2 = 1
and µ3 = 1. At last, the CSP sends µ = µ1 ∧ µ2 ∧ µ3 = 1 to
U4. Thus, U4 needs to upload C4

m. According to data processing
in Section 4.2.4, if tag consistency is satisfied, the CSP deletes C1

m

and C3
m in the datasets of U1 and U3, respectively. Meanwhile, the

CSP sets link1m = link4m and link3m = link4m, respectively. Since
the link2m points to other user’s dataset, i.e., link2m = link1m, the
ciphertext is not actually stored in U2’s dataset. In this case, the CSP
sets link2m = link1m∪ link4m = link4m. Finally, under the assurance
of access control, the CSP only stores one copy of the data m, as
shown in Fig. 4(e).

4.3 Data Download

After a period of time, when Ui wants to download an outsourced
data m, he or she uses lablem to find the stored link linkim, and then
directly downloads the encrypted data based on linkim. Note that the
linkim points to either the dataset of Ui or the dataset of another user,
like Uj . Thus, the downloaded data may be Cim or Cjm.

• If the downloaded data is Cim, Ui decrypts it with his or her
own symmetric key bi.

• If the downloaded data is Cjm, Ui decrypts it with the
authorized symmetric key bj .

Note that we do not consider the message authentication in this
paper due to page limitations. In fact, this requirement can be easily
achieved by using the message authentication code technique.

5 SECURITY ANALYSIS

In this section, we analyze the security properties of our scheme.
Particularly, our analysis includes four aspects: data confidentiality,
access control, tag consistency and resistance to brute-force attacks.
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5.1 Data Confidentiality

Our scheme aims to ensure that any adversary including the semi-
trusted CSP and unauthorized users cannot get data content from
outsourced data. Specifically, we prove that our scheme is seman-
tically secure against the CSP or unauthorized users. Note that as
described in Section 2.2, the CSP would not collude with any user
due to the reputation. For the outsourced data (Cai , T

i
m, τ

i
m, C

i
m),

T im and τ im are generated from Cim, so it comes down to whether
the CSP or unauthorized users can obtain m from the symmetric
ciphertext Cim = SEbi(m). Due to the security of AES algorithm
[34], the only way is to obtain bi = H1(ai). Since the secret ai
is encapsulated in Cai =

(
gβi

1 y
ri , aiz

βi
)
, the crux of the security

in our scheme is the advantage of obtaining ai. Therefore, in the
following parts, we focus on the security analysis related to ai.

First, we prove that our scheme is semantically secure for unau-
thorized users under the SD assumption (see Definition 3).

Theorem 1. The proposed scheme is semantically secure for unau-
thorized users if the SD assumption holds.

Proof. Suppose a polynomial-time adversary A (corrupting an unau-
thorized user) can attack our scheme with advantage ε(κ0), then we
can build an algorithm B that can break the SD assumption with the
same advantage as follows.

• Init: Given the parameters (N,G,GT , e, g, z, y)1, B ran-
domly selects a master private key α ∈ ZN , and computes
g1 = gα ∈ G. Note that in our scheme, B would generate the
public and private key pair for each user, even for an unautho-
rized user. Thus, B generates (pkA, skA) = (gdAα

−1

, dA)
for A, where dA ∈ ZN is a random number. Since data
owners do not affect the security analysis, without loss of
generality, we consider one data owner instead of ω data
owners for the sake of simplicity, i.e., B only generates
one public key pk = gdα

−1

instead of (pk1, . . . , pkω)
(see Section 4.1, System initialization). Finally, B gives the
public parameters (N,G,GT , e, g1, z, y, pk, pkA) together
with dA to A.

• Challenge: A selects two messages m0,m1 ∈ GT , and then
submits them to B. B flips a fair binary coin b∗, and returns
an encryption of mb∗ ∈ {m0,m1}. The ciphertext is output
as

Cb∗ = (gβ1 y
r,mb∗ · zβ),

where β, r ∈ ZN .
• Guess: A outputs a guess b′ of b∗. If b′ = b∗, B outputs 1 to

indicate that y is uniform in the subgroup Gp; otherwise, B
outputs 0 to indicate that y is uniform in G.

When y is uniform in the subgroup Gp, then the public key and
element gβ1 y

r given toA are as in the real semantic security game. In
this case, the advantage ofA is ε(κ0) by definition, i.e.,A can obtain
zdAβ with advantage ε(κ0), and then obtain mb∗ with the private
key dA by computing mb∗ · zβ/(zdAβ)d

−1
A , so we have Pr[A(b′ =

b∗)] = 1/2+ ε(κ0). Since B outputs 1 exactly when the output b′ of
A is equal to b∗, we have

Pr[B(N,G,GT , e, y) = 1 : y ∈ Gp]| = Pr[A(b′ = b∗)]

=
1

2
+ ε(κ0).

1. Since B does not know the factorization of the group order N , the parameter
z = e(g, g)p is also given to B together with g.

When y is uniform in G, the element gβ1 y
r is uniformly dis-

tributed in G and is independent of b∗. Hence, Pr[A(b′ = b∗)] =
1/2, which indicates that

Pr[B(N,G,GT , e, y) = 1 : y ∈ G] = Pr[A(b′ = b∗)] =
1

2
.

Therefore, we can obtain that

SD−AdvB =|Pr[B(N,G,GT , e, y) = 1 : y ∈ G]−
Pr[B(N,G,GT , e, y) = 1 : y ∈ Gp]|

=

∣∣∣∣12 −
(
1

2
+ ε(κ0)

)∣∣∣∣ = ε(κ0).

Based on Definition 3, we obtain ε(κ0) ≤ negl(κ0).

Next, we prove that our scheme is semantically secure for the CSP
under the DDBDH assumption. Since the CSP possesses the private
key p, it knows gp and can compute (gβ1 y

r)p = gpβ1 = (gp)αβ .
Thus, the ciphertext given to the CSP can be reduced to Cm =(
(gp)αβ ,m · zβ

)
. For convenience, we use g and e(g, g) instead of

gp and z = e(g, g)p in the following proof, respectively. Thus, for
the CSP, the encryption operation given in Eq. (2) can be reduced to
Cm =

(
(gp)αβ ,mzβ

)
=
(
gαβ ,m · e(g, g)β

)
.

Theorem 2. The proposed scheme is semantically secure for the CSP
if the DDBDH assumption holds.

Proof. Suppose a polynomial-time adversaryA (corrupting the semi-
trusted CSP) can attack our scheme with advantage ε(κ0), then we
can build an algorithm B that can break the DDBDH assumption with
the same advantage as follows.

• Init: Given the parameters (g, ga, gb,W ), B sets g1 = gb.
Then it randomly selects d ∈ ZN , and computes pk = gd. Fi-
nally, B gives the public parameters (N,G,GT , e, g1, pk)2to
A.

• Challenge: A selects two messages m0,m1 ∈ GT , and then
submits them to B. B flips a fair binary coin b∗, and returns
an encryption of mb∗ ∈ {m0,m1}. The ciphertext is output
as

Cb∗ = (ga,mb∗ ·W ).

• Guess: Note that in our scheme, the CSP can conduct the
re-encryption operation (i.e., compute Eq. (4)), thus A first
computes e(ga, pk) = e(g, g)bdk = e(gk1 , pk) = e(g, g)γk,
3 where γ = bd. Then, it outputs a guess b′ of b∗. If b′ = b∗,
B outputs 1 to indicate that W = e(g, g)a/b; otherwise, B
outputs 0 to indicate that W is a random element from GT .

When W = e(g, g)a/b, then we can get e(g, g)a/b = e(g, g)bk/b =
e(g, g)k. Thus, A sees a proper encryption of mb∗ , i.e., Cb∗ =
(gbk,mb∗ · e(g, g)k). The advantage of A is ε(κ0) by definition, i.e.,
A can obtain mb∗ with advantage ε(κ0) from the re-encryption ci-
phertext

(
e(g, g)γk,mb∗ · e(g, g)k

)
, so we have Pr[A(b′ = b∗)] =

1/2 + ε(κ0). Since B outputs 1 exactly when the output b′ of A is
equal to b∗, we have that

Pr
[
B
(
g, ga, gb, e(g, g)

a
b

)
= 1

]
= Pr [A(b′ = b∗)] =

1

2
+ ε(κ0)

2. As analyzed above, the encryption operation is reduced to Cm =(
gαβ ,m · e(g, g)β

)
, so we can ignore the parameter y = xq here. In our scheme,

both the KGC and CSP know the the factorization of the group order N , i.e., p,
they can obtain z = e(g, g)p. In other words, A and B know z, and thus we also
ignore z here. Note that the KGC would not generate the public/private key for
the CSP, thus A cannot obtain the corresponding key pair (pkA, skA).

3. We can think of ga as gbk for some k ∈ ZN .
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When W is a random element from GT , then mb∗W is a
random element of GT from A’s view, which means that A gains no
information about b∗. Hence, Pr [A(b′ = b∗)] = 1/2, which implies
that

Pr
[
B
(
g, ga, gb,W

)
= 1

]
= Pr [A(b′ = b∗)] =

1

2
.

Therefore, we can obtain that

DDBDH−AdvB =|Pr[B(g, ga, gb,W ) = 1]−
Pr[B(g, ga, gb,W = e(g, g)a/b) = 1]|

=

∣∣∣∣12 −
(
1

2
+ ε(κ0)

)∣∣∣∣ = ε(κ0),

which implies that ε(κ0) ≤ negl(κ0) with Definition 2.

Based on Theorems 1 and 2, the security of the proposed scheme
is shown in Theorem 3.

Theorem 3. The proposed scheme is semantically secure under the
SD and DDBDH assumptions.

Obviously, if the internal adversary with a certain secret cannot
obtain the plaintext from the outsourced data, there is no doubt that
the external adversary also cannot. Therefore, our scheme can ensure
that any adversary including the CSP or unauthorized users cannot
get data content from the outsourced data.

5.2 Resistance to Brute-Force Attacks

In this section, we analyze that our scheme can resist brute-force
attacks launched by the CSP or unauthorized users based on the
background knowledge of message spaceM.

First, we analyze that the CSP cannot determine which content
corresponds to the specific encrypted data by launching offline brute-
force attacks. For the specific stored data (Cai , T

i
m, τ

i
m, C

i
m), the

CSP wishes to determine which data in M generates them. Similar
to Section 5.1, T im and τ im are generated from the ciphertext Cim, so
the core is to find which data corresponds to Cim. More specifically,
for each data mk ∈M, the CSP tries to generate the valid ciphertext
Cimk

, and then checks whether Cim = Cimk
to determine whether

mk is the plaintext of Cim. However, based on Theorem 2, the CSP
cannot obtain the secret ai (i.e., the symmetric key bi), so it cannot
generate a valid ciphertext Cimk

. Similarly, the CSP cannot decrypt
Cim to obtain m without bi.

Then, we analyze that unauthorized users cannot know whether
an interested user owns some data by launching online brute-force
attacks. More precisely, for any data mk ∈ M, in order to know
whether an interested user Ui owns it, an unauthorized user Uj tries
to upload mk and relies on the CSP to perform data deduplication.
If the duplicate exists, it means that Ui owns mk. Otherwise, Ui
does not own mk. However, Uj cannot obtain this useful information
under our scheme. The main reason is that according to Theorem 1,
Uj as an unauthorized user of Ui cannot obtain Ui’s symmetric key
bi. As described in Section 4.2.3, without the symmetric key bi, Uj
cannot generate a valid tag T imk

used for checking the duplicate in
Ui’s dataset.

5.3 Access Control

In this section, we describe that our scheme can eliminate the
redundancy without violating access control. In other words, after
eliminating the redundancy, it still ensures that any authorized user
can correctly decrypt the outsourced encrypted data, while all unau-
thorized users cannot.

First, we show that any authorized user can obtain the symmetric
key selected by the data owner. In our scheme, each user Ui encrypts
a random secret ai used to generate the symmetric key, and then sends
this key encapsulated ciphertext Cai together with an authorization
set Oi to the CSP (see Section 4.1). Thus, it should ensure that all
users in Oi can obtain ai to correctly decrypt all encrypted data
outsourced by Ui. Specifically, since the CSP owns the secret p, it
can re-encrypt Cai for any user Uj ∈ Oi with the corresponding
public key pkj = gdjα

−1

as e
(
(gβi

1 y
ri)p, pkj

)
= zdjβi forming a

re-encrypted ciphertext Cjai = (zdjβi , aiz
βi). Then, Uj uses the own

private key dj to obtain the secret ai (see Eq. (5)). Accordingly, with
the symmetric key bi = H1(ai), authorized users can correctly de-
crypt the encrypted data outsourced by Ui. Furthermore, as described
in Section 4.2.3, the CSP only checks the duplicate in the case thatOi
and Oj are mutually contained. Specifically, if the duplicate exists,
then the unique copy is always stored in the dataset of the user whose
authorization set is the superset. For example, if Oi is the superset,
i.e., Oj ⊂ Oi, then the unique copy stored in the cloud is uploaded
by Ui. Since all users in Oi = Oj ∪ Oi can obtain the symmetric
key bi selected by Ui, it ensures that all users in sets Oi and Oj can
access outsourced data owned by Ui and Uj when only one copy is
stored.

Based on Theorem 1, if Uj is not authorized by Ui, Uj cannot
obtain the secret ai even owning the private key dj . Thus, our
scheme ensures that all unauthorized users cannot correctly decrypt
the encrypted data outsourced by an interested data owner.

5.4 Tag Consistency

In secure deduplication schemes, a malicious user (corrupted by an
adversary) may carry out duplicate faking attacks during data upload
to prevent legitimate users from obtaining correct data. Particularly,
suppose a malicious user U ′ defines an authorization set O′ = U so
that the access set Ii of each user Ui includes him, i.e., U ′ ∈ Ii. We
also suppose that U ′ may have the same data m with a legitimate
user Ui. To prevent Ui from obtaining m, U ′ maliciously generates
a ciphertext Cm∗ from the different data m∗, and initially uploads
it with a tag Tm generated from m. If the CSP does not check
tag consistency, then it would store (Cm∗ , Tm, τm) in U ′’s dataset.
WhenUi subsequently uploadsm, the CSP would check the duplicate
in U ′’s dataset due to U ′ ∈ Ii. As described in Section 4.2.3, the CSP
definitely finds the duplicate after the inter-deduplication and stores
Cm∗ as the unique copy due to Oi ⊆ O′. As a result, Ui including
authorized users cannot obtain m from the inconsistent ciphertext
Cm∗ .

Fortunately, our scheme can easily detect duplicate faking at-
tacks. As shown in Section 4.2.4, when the CSP receives Cm∗
from U ′, it generates the corresponding verifiable token τverify =
H2 (h1(Cm∗)‖ · · · ‖hf (Cm∗)). Then, the CSP checks whether
τm∗ = τm holds, where τm = H2 (h1(Cm)‖ · · · ‖hf (Cm)) is
computed based on the tag Tm. If τverify 6= τm, it implies Cm∗
and Tm are inconsistent. Thus, the CSP drops (Cm∗ , Tm, τm). Note
that H2(·) is a cryptographic hash function that can resist the hash
collision. If the input is different, then the hash value should be differ-
ent. However, in the Bloom filter, f hash functions {h1, h2, . . . , hf}
are not cryptographic hash functions, so the collision may exist. That
is, two different ciphertexts Cm∗ and Cm may generate two tags Tm∗
and Tm such that hi(Cm∗) = hi(Cm) for i = 1, 2, . . . , f , resulting
in two same token τverify and τm. More specifically, for each hash
function hi : {0, 1}∗ → {1, 2, . . . , δ}, the probability of collision
is Pr (hi(Cm∗) = hi(Cm)) = 1/δ. Thus, the probability of tag col-
lision is Pr (τverify = τm) =

∏f
i=1 Pr (hi(Cm∗) = hi(Cm)) =
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TABLE 2: Comparison of security for authorized deduplication schemes.

Scheme
Without IS in

Confidentiality
Resistance to Tag Access

data upload phase brute-force attacks consistency control
Li et al.’s scheme [17] #  H# #  

Cui et al.’s scheme [18] #  H# H# H#
Yan et al.’s scheme [19] #  # #  
Liu et al.’s scheme [35]     #

Our scheme      
“IS”: Independent Server, “ ” = satisfied, “H#”= partially satisfied, and “#”= unsatisfied.

(
1
δ

)f
. Actually, the probability of collision can be negligible by

reasonably selecting f and δ. For example, condisering the false
positive probability P (see Eq. (1)), if f = 8 and δ = 227,
then with at most 220 elements in Bloom filter, the false positive
probability is P ≈ 10−10 and the tag collision probability is
Pr
(
τverify = τm

)
= 2−216.

5.5 Comparison

We list the comparison of the security for related deduplication
schemes in Table 2, where  , H# and # denote satisfied, partially
satisfied and unsatisfied, respectively. From the table, we can see our
scheme can achieve more security-related criteria than those existing
schemes under a simplified and practical model. Specifically, from
a system architecture viewpoint, both our scheme and Liu et al.’s
scheme [35] are superior to the schemes in [17]–[19]. During the
phase of data upload, neither our scheme4 nor Liu et al.’s scheme
[35] requires an extra independent server (IS), as a result both
of them satisfy the requirement of without IS, marked as “ ” in
second column of Table 2. On the other hand, in order to resist
offline brute-force attacks launched by the CSP, the system in [17]
introduces a private cloud and limits data deduplication operations to
the private cloud. Besides the CSP, the system in [18] also includes
two extra independent servers: one is a private cloud for performing
data deduplication to resist the offline brute-force attacks launched
by the CSP, and the other is a trusted attribute authority (AA) for
performing access control. In [19], the system needs to involve a
trusted authorized party to achieve access control. Thus, none of these
three schemes can meet the requirements without IS, marked as “#”.

From a security perspective, our scheme achieves more security-
related criteria than existing schemes. More specifically, our scheme
satisfies data confidentiality, tag consistency and access control while
resisting brute-force attacks. However, as shown in the fourth column
of Table 2, the resistance to brute-force attacks for both schemes
in [17], [18] is partially satisfied, marked as “H#”, and Yan et al.’s
scheme [19] cannot resist brute-force attacks, marked as “#”. The
reason is that both schemes in [17], [18] can only resist the offline
brute-force attacks launched by the CSP but cannot resist such attacks
launched by the honest-but-curious private cloud. The scheme in [19]
directly hashes the message to check duplicates, and thus similar to
the convergent encryption (CE) algorithm, it suffers from brute-force
attacks launched by the CSP. For tag consistency, since the ciphertext
is not directly related to the corresponding tag, Li et al.’s scheme [17]
and Yan et al.’s scheme [19] cannot support the CSP to check the tag
consistency during data upload. That is, both schemes cannot satisfy
tag consistency, which is marked as “#”. Because tag consistency
is conducted after downloading and decrypting the ciphertext, which
makes it impossible to determine whether the inconsistent data is

4. Note that the system model in our scheme contain a trusted KGC, but this
party only participates in the system initialization phase and does not participate
in the data upload phase.

caused during data upload (i.e., duplicate faking attacks) or at data
storage, the tag consistency in [18] is partially satisfied (marked as
“H#”). For the requirement of access control, Cui et al.’s scheme
[18] is partially satisfied (marked as “H#”). The reason is that when
two access policies are not mutually contained, the private cloud re-
encrypts the ciphertext to yield a new ciphertext associated with an
access structure which is the union of two access policies. In this case,
the symmetric key of one data owner is leaked to the users who satisfy
the access policy of another data owner but do not satisfy that owner.
Accordingly, this somewhat violates access control. The scheme in
[35] focuses on resisting brute-force attacks without the IS and does
not consider access control that is a prevalent requirement in cloud
computing. Compared to [35], our scheme releases the pressure of
users, that is, previous uploaders are not required to be always online
to involve in helping new uploaders obtain the symmetric key related
to the generation of the ciphertext and tag. In addition, our scheme
can completely resist the online brute-force attack launched by the
CSP (see Theorem 2), while the scheme in [35] can only reduce the
capacity of such attack through the rate-limiting strategy.

6 PERFORMANCE EVALUATION

In this part, we conduct experiments in Java with jPBC [36] and GMP
[37] libraries running on the MacBook Pro (a 2.3 GHz Intel Core
i5 and 8 GB memory) to evaluate the performance of our scheme
in terms of computational, communication and storage overheads.
Moreover, based on the granularity of access rights (i.e., user-level),
we compare our scheme with Yan et al.’s scheme [19] and Cui et al.’s
scheme [18] with regard to file-level deduplication and chunk-level
deduplication. We also compare our scheme with Liu et al.’s scheme
[35] to show the efficiency without an extra independent server. It
is worth noting that since data deduplication is only related to the
phase of data upload, we ignore related overheads of the system
initialization and data download parts in the comparison.

6.1 Simulation Setup

In the simulation, 9 users {U1, U2, . . . , U9} in total are considered
in the system, and the related authorization sets and access sets
are shown in Fig. 5, which includes all possible cases of the set
relationship. Three datasets S1, S2 and S3 with different file size are
used in the simulation, where the file sizes in S1, S2 and S3 are about
1 KB, 512 KB and 1 MB, respectively, and each dataset contains 100
files. For each dataset Sk, k = 1, 2, 3, all users upload it within 10
time periods in turn. Algorithm 2 shows the simulation process of
data upload. Specifically, for each dataset Sk (k = 1, 2, 3), 9 users
randomly selects 10 files from Sk\10(j − 1) (see footnote 4) to
upload in turn at time tj . After time t10, each user finishes uploading
100 files of Sk. After that, each user again randomly selects 10 files
from Sk to upload in turn at t11 and t12, respectively, to verify the
advantage of intra-deduplication (see lines 9-14).
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Fig. 5: Authorization and access sets for users in the system.

Algorithm 2 Simulation process of data upload

1: for (k = 1; k ≤ 3; k++) do
2: // Upload three datasets S1, S2 and S3 in turn.
3: for (j = 1; j ≤ 10; j++) do
4: // For each dataset Sk, all users upload it within 10 time

periods.
5: for (i = 1; i ≤ 9; i++) do
6: At time tj , Ui randomly selects 10 files from Sk\10(j−

1).5

7: end for
8: end for
9: for (j = 11; j ≤ 12; j++) do

10: // For each dataset Sk, all users again upload 10 files at
time t11 and t12, respectively.

11: for (i = 1; i ≤ 9; i++) do
12: At time tj , Ui randomly selects 10 files from Sk.
13: end for
14: end for
15: end for

Besides, for the bilinear pairing parameters [36], we choose type
A1 for our scheme and type A for the other three schemes6. We
adopt AES-256 encryption algorithm in CBC mode, i.e., κ1 = 256
bits. We also set |U | = |link| = |label| = 64 bits. Furthermore, we
set f = 8 and δ = 227 so that the Bloom filter can contain up to 220

data. Similar to [35], we measure deduplication effectiveness using
the deduplication percentage ρ, which is defined as:

ρ =

(
1− Number of all files in storage

Total number of upload requests

)
· 100%

6.2 Simulation Results
We compare the effectiveness of deduplication for four schemes
in Fig. 6, which demonstrates that the effectiveness of chunk-level
deduplication is superior to the file-level deduplication. Furthermore,
the deduplication effectiveness of Cui et al.’s scheme [18] and Liu
et al.’s scheme [35] is the best, followed by our scheme, the worst
is Yan et al.’s scheme [19]. Although the deduplication effectiveness
of our scheme is less than that of schemes in [18], [35], the gap is
shrinking over time and our scheme can further satisfy access control.
Specifically, Liu et al.’s scheme does not consider access control,
and thus the CSP checks for duplicates in all stored data. In other
words, the CSP just stores one copy of each uploaded data, ensuring
the best deduplication effectiveness. Among the other three schemes,
two authorization sets Oi and Oj contain three relationships: (1)

5. 10(j − 1) represents the files randomly selected before time tj , and
Sk\10(j − 1) indicates the remaining files in Sk after removing the 10(j − 1)
files selected before time tj .

6. For fair comparison, the PAKE protocol of Liu et al.’s scheme [35] is
implemented in the cyclic multiplicative group consisting of points on an elliptic
curve over a finite field, which is the same as the group of the bilinear pairing.

Oi ⊆ Oj , (2) Oj ⊂ Oi and (3) Oi and Oj are not mutually
contained. More specifically, in order to ensure access control, Yan
et al.’s scheme only considers deduplicating the duplicate in the case
of Oi ⊆ Oj . For example, when U1 requests to upload m, the CSP
only checks the duplicate in the datasets of U3 and U9. In our scheme,
we consider the first two cases. With the same example, besides the
datasets of U3 and U9, the CSP also checks the duplicate in U2’s
dataset due to O2 ⊂ O1. Thus, the deduplication effectiveness of our
scheme is better than that of Yan et al.’s scheme. Cui et al.’s scheme
takes all cases into consideration to achieve the same effectiveness as
Liu et al.’s scheme at the expense of access control to some extent
(see Table 2). For example, when U4 requests to upload m previously
uploaded by U5, the private cloud would find the duplicate. However,
O4 andO5 are not mutually contained. To ensure all users inO4∪O5

correctly decrypt Cm generated by U5, the private cloud need to
conduct the re-encryption operation to make U5’s symmetric key
available to these users. In this case, an unauthorized user U6 /∈ O5

can also obtain U5’s key, which violates access control.

1 2 3 4 5 6 7 8 9 10 11 12
0

10

20

30

40

50

60

70

80

90

100

Time interval ti (i = 1, 2, . . . , 12)

D
ed

up
lic

at
io

n
pe

rc
en

ta
ge

%

Our scheme (file-level)
Yan et al.’s scheme (file-level)
Cui et al.’s (& Liu et al.’s) scheme (file-level)
Our scheme (chunk-level)
Yan et al.’s scheme (chunk-level)
Cui et al.’s (& Liu et al.’s) scheme (chunk-level)

Fig. 6: Effectiveness of deduplication.

We depict the comparison of computational costs in Fig. 7. From
the figure, it can be obviously shown that computational costs of
chunk-level deduplication are larger than that of file-level dedupli-
cation. Further, when the message length (|m|) is relatively small,
computational efficiency is mainly affected by deduplication-related
operations (e.g., tag generation, duplicate search and verification). As
a result, Fig. 7(a) demonstrates that computational costs associated
with deduplication operations in our scheme are the lowest. As |m|
increases, the computational efficiency of our scheme is slightly
lower than that of Yan et al.’s scheme (see Figs. 7(b) and 7(c)). The
main reason is that our scheme generate the tag with the encrypted
data, and thus computational costs are influenced by the symmetric
encryption algorithm (i.e., |m|). From Fig. 7, we can also observe
that the computational efficiency of our scheme is far superior to Liu
et al.’s scheme and Cui et al.’s scheme, especially for the chunk-
level deduplication. The main factors include the tag generation,
the operation of duplicate verification and the time complexity of
duplicate search. Specifically, Liu et al.’s scheme requires users
to interactively run the same-input-PAKE protocol many times to
generate the tag, which incurs high computational costs. Cui et al.’s
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(b) |m| = 512 KB.
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Fig. 7: Comparison of computational costs in the phase of data upload.

scheme checks duplicates by performing time-consuming pairing
operations and the time complexity of duplicate search increases lin-
early with the number of stored files (i.e., O(2n) pairing operations
for n stored data). On the contrary, our scheme does not require
interactive protocols and the corresponding duplicate search is based
on an efficient Bloom filter technique, where the time complexity of
duplicate search is O(f) (f � n).

We plot the comparison of communication overhead in Fig. 8.
From the figure, it can be obviously seen that the communication
overhead increases as the message length |m| increases. When |m| is
relatively small, the communication overhead associated with dedu-
plication is dominant. Specifically, as shown in Fig. 8(a), the com-
munication overhead of our scheme is the lowest, while the commu-
nication overhead of Liu et al.’s scheme (chunk-level deduplication)
is the largest. Similar to the above analysis, the interactions of the
same-input-PAKE protocol in Liu et al.’s scheme would cause extra
communication costs and the chunk-level deduplication would further
increase the number of executions of this protocol. Figures 8(b) and
8(c) show that as |m| increases, the communication overheads of our
scheme is almost the same as that of Yan et al.’s scheme, and both of
them are less than that of Cui et al’s scheme but larger than that of
Liu et al’s scheme. In addition, it also shows that the communication
efficiency of chunk-level deduplication is better than that of file-level
deduplication, which implies that the communication efficiency is
also influenced by the deduplication effectiveness. The reason is that
Cui et al.’s scheme adopts the server-side deduplication [28], where
users always send outsourced data to the CSP regardless of whether
duplicates exist. Obviously, this type of deduplication cannot save the
communication overhead even the duplicate exists. On the contrary,
the other three schemes use the client-side deduplication, which can
reduce communication overhead when duplicates exist. In addition,
since the deduplication effectiveness of Liu et al.’s scheme is the
best, the number of uploaded ciphertexts is the least, which implies
the corresponding communication efficiency is the best.

Figure 9 shows the comparison of storage cost. It can be ob-
viously shown that the storage efficiency is significantly influenced
by the deduplication effectiveness and message length |m|. More
specifically, storage costs are gradually dominated by the encrypted
data as |m| increases. Further, the number of stored encrypted data
decreases as the deduplication effectiveness improves. Thus, from

the figure, we can observe that the storage efficiency of chunk-level
deduplication is better than that of file-level deduplication. Fig. 9(a)
indicates that when |m| is relatively small, our scheme reduces the
storage costs associated with deduplication compared to Cui et al.’s
scheme. When |m| is relatively large, figures 9(b) and 9(c) show
that the storage efficiency of Cui et al.’s scheme and Liu et al.’s
scheme are the best, followed by our scheme, and the worst by Yan
et al.’s scheme. Although Liu et al.’s scheme and Yan et al.’s scheme
can obtain the optimal storage efficiency, Liu et al.’s scheme does
not consider access control while Cui et al.’s scheme sacrifices the
complete access control. By contrast, our scheme can obtain storage
efficiency while ensuring access control.

Consequently, under the guarantee of given security criteria, our
scheme is indeed efficient in terms of the effectiveness of deduplica-
tion, computational cost, communication overhead and storage cost
compared with the up-to-date works, which shows the significance
and practical potential of our scheme to support authorized secure
deduplication.

7 RELATED WORK

Secure deduplication technique, as it can eliminate redundant data
while achieving data confidentiality, has been widely developed by
the research community. The related researches can be categorized
into the following three aspects: data confidentiality, tag consistency
and access control.

Data confidentiality: To ensure data confidentiality, Douceur et al.
[6] first introduced the convergent encryption to achieve deduplication
over encrypted data. Then, Bellare et al. [12] formalized convergent
encryption a new cryptographic primitive called message-locked
encryption and gave a semantic security proof for unpredictable
messages. After that, many implementations and variants of the
convergent encryption or message-locked encryption were deployed
in [8], [13], [14], [38], [39]. However, for predictable messages,
the message-locked encryption is vulnerable to brute-force attacks.
Hence, data confidentiality would be defeated as the adversary can
obtain which data corresponds to the specific ciphertext. In order
to resist brute-force attacks, some server-aided secure deduplication
schemes have been proposed [10], [11], [40], where each user
interacts with one or a threshold number of additional key servers to
obtain the convergent key. However, these schemes sacrifice either the
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Fig. 8: Comparison of communication overhead in the phase of data upload.
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Fig. 9: Comparison of storage cost in the phase of data upload.

deduplication efficiency [10], [40] or the efficiency of computation,
communication and storage [11]. Liu et al. [35] deployed the secure
cross-user deduplication scheme that provides strong security without
requiring any additional independent servers. However, all users are
requested to be constantly online and heavily involved in helping
uploaders obtain the convergent key generated by the user who has
already uploaded the same file. This is suitable for peer-to-peer
paradigm, but less applicable for the cloud environment [11].

Tag consistency: As mentioned in [12], [41], there exists a specific
attack, called duplicate faking attack, in secure deduplication, which
causes legitimate users to obtain incorrect data. In more details, an
adversary uploads a maliciously-generated ciphertext such that the
underlying data is different from the data corresponding to the tag.
As a result, the subsequent legitimate users who upload the same tag
cannot extract the exact data after deduplication. The main reason for
this attack is the irrelevance of tag and ciphertext, which makes it
impossible for cloud service providers to check the tag consistency.
To solve this issue, some schemes have taken the tag consistency into
consideration [13]–[15], [24], [42]. However, in these schemes, the

verification of tag consistency is conducted by legitimate users after
they have downloaded and decrypted the ciphertext. In this case, when
the verification is failed, it cannot directly conclude the incorrect data
is caused by duplicate faking attacks because the stored data may be
corrupted during data storage. To overcome this problem, Li et al.
[16] directly generated the tag from the ciphertext to support cloud
service providers to check the tag consistency during data upload
phase.

Access control: As described in [43], with the great benefits of
cloud computing, data owners prefer to outsource their encrypted
data to cloud service providers and usually share their outsourced
data to authorized users. In this context, several existing schemes have
combined the secure deduplication with access control. For example,
Li et al. [17] considered the different privileges of users in duplicate
check besides the data itself, where the duplicate can be eliminated
only when the privileges of files defined by users are matched. Tang
et al. [44] leveraged ciphertext-policy attribute-based encryption (CP-
ABE) [45] to achieve authorized secure deduplication. Cui et al. [18]
achieved access control for secure deduplication by using linear secret
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sharing technique [46]. Besides, Yan et al.’s scheme [19] offered
secure deduplication with access control by adopting the CP-ABE
and proxy re-encryption technique (PRE) [30]. However, to the best
of our knowledge, these schemes cannot simultaneously achieve the
efficiency, tag consistency and resistance to brute-force attacks.

8 CONCLUSION

In this paper, we have proposed an efficient secure deduplication
scheme with user-defined access control. Specifically, our scheme
does not need to introduce an additional authorized server or use
the hybrid cloud architecture to achieve the authorized deduplication.
In our scheme, only the CSP can manage access rights on behalf
of data owners without threatening data confidentiality. Besides, our
scheme introduces the Bloom filter to efficiently complete the dupli-
cate check. Detailed security analyses demonstrate that our scheme
can achieve data confidentiality, access control, tag consistency and
resistance to brute-force attacks at the same time. Further, extensive
performance evaluations on file-level deduplication and chunk-level
deduplication show the efficiency of our scheme, in terms of the
effectiveness of deduplication, computational cost, communication
overhead and storage cost.
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